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Abstract

In this paper we prove a strengthened general inequality of the Hardy–Knopp type and also

derive its dual inequality. Furthermore, we apply the obtained results to unify the strengthened

classical Hardy and Pólya–Knopp’s inequalities deriving them as special cases of the obtained

general relations. We discuss Pólya–Knopp’s inequality, compare it with Levin–Cochran–

Lee’s inequalities and point out that these results are mutually equivalent. Finally, we also

point out a reversed Pólya–Knopp type inequality.
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1. Introduction

In paper [7] Hardy announced, and then proved in [8], a highly important classical
integral inequality

Z
N

0

1

x

Z x

0

f ðtÞ dt

� �p

dxp
p

p � 1

� �p Z N

0

f pðxÞ dx; ð1Þ

ARTICLE IN PRESS

�Corresponding author. Department of Mathematics, Luleå University of Technology, SE-971 87
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the so-called Hardy’s inequality, where p41 and fALpð0;NÞ is a non-negative
function. On the other hand, the following related exponential integral inequalityZ
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holds for positive functions fAL1ð0;NÞ: This well-known inequality is many times
referred to as Knopp’s inequality, with the reference to paper [11]. However,
inequality (2) was certainly known before the mentioned Knopp’s paper and Hardy
himself (see [8, p. 156]) claimed that it was G. Pólya who pointed it out to him earlier
(probably by using the limit argument below). Therefore, we prefer to call (2) by
name Pólya–Knopp’s inequality (see also [12,13]). Note that the discrete version of
(2) is surely due to Carleman [1].

It is important to note that inequalities (1) and (2) are closely related since (2) can

be obtained from (1) by rewriting it with the function f replaced by f 1=p and letting
p-N: Therefore, Pólya–Knopp’s inequality may be considered as a limiting
relation of Hardy’s inequality. Moreover, the constant factors appearing on the
right-hand sides of both inequalities (1) and (2) are sharp (the best possible), that is,
they cannot be replaced by any smaller constants. For further remarks concerning
the history and properties of inequalities (1) and (2) and their generalizations see
e.g. [9] or [15], and also [12,13].

Since Hardy and Pólya discovered inequalities (1) and (2), they have been
discussed by several authors, who either reproved them using various techniques, or
applied and generalized them in many different ways. Here, we just emphasize
monographs [9,13,15,16], related to this topic, and mention Refs. [2–6,10,14,18,19],
all of which to some extent have guided us in the research we present here.

In particular, following the results of Yang et al. from [18,19], in paper [4]
Čižmešija and Pečarić obtained the so-called strengthened Hardy and Pólya–Knopp-
type inequalities. These are relations of the same type as (1) and (2) but with two
differences: (i) the outer integrals on their both sides are, instead over ð0;NÞ; taken
over ð0; bÞ or ðb;NÞ; where bAR; b40; is arbitrary; (ii) the function under the sign
of integration on the right-hand side is multiplied by a certain function 0pvðxÞp1
(see Corollaries 1 and 2 below). These sharp inequalities were derived by using a
technique of mixed-means inequalities, introduced in [2]. Later on, in [5], similar
results were proved in another way, using a different method.

On the other hand, in [10] Kaijser et al. pointed out that both (1) and (2) are just
special cases of the much more general Hardy–Knopp-type inequality for positive
functions f ;Z
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where F is a convex function on ð0;NÞ: This shows that both Hardy and
Pólya–Knopp’s inequality can be derived by using only convexity, and gives an
elegant new proof of these inequalities.

Our aim in this paper is to merge and generalize the recent results from [4,5,10].
First, we generalize relation (3) by adding weight functions and truncating the range
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A. Čižmešija et al. / Journal of Approximation Theory 125 (2003) 74–84 75



of integration to ð0; bÞ: In fact, we obtain a strengthened inequality of the Hardy–
Knopp type and also prove the so-called dual inequality to this relation, that is, an
inequality with the outer integrals taken over ðb;NÞ and with the inner integral on
the left-hand side taken over ðx;NÞ: Thus we unify the strengthened Hardy and
Pólya–Knopp’s inequalities and derive them as special cases of our more general
results. Finally, we discuss the Pólya–Knopp’s inequality, compare it to the Levin–
Cochran–Lee’s inequalities from [6,14] (cf. also [3,4,15]), and point out that these
results are mutually equivalent.

Conventions. Throughout this paper, all functions are assumed to be measurable and

expressions of the form 0 �N; N
N
; and 0

0
are taken to be equal to zero. Moreover, by a

weight function u we mean a non-negative measurable function on the actual
interval. Motivated by the well-established concept of duality related to weighted
Lebesgue spaces and by the fact that the Hardy operators

ðHf ÞðxÞ ¼
Z x

0

f ðtÞ dt and ðH̃f ÞðxÞ ¼
Z

N

x

f ðtÞ dt; x40

are mutually conjugate, that is, H� ¼ H̃ (for further information see e.g. [13,
Chapter 1; 16, Chapter 1]), we shall call an inequality with the inner integral taken

over ðx;NÞ on its left-hand side to be dual to the one of the same type, with
R
N

x

replaced by
R x

0
:

2. The main results

We state and prove a strengthened Hardy–Knopp-type inequality that generalizes
inequality (3). It is given in the following theorem.

Theorem 1. Suppose 0obpN; u : ð0; bÞ-R is a non-negative function such that the

function x/uðxÞ
x2 is locally integrable in ð0; bÞ; and the function v is defined by

vðtÞ ¼ t

Z b

t

uðxÞ
x2

dx; tAð0; bÞ:

If the real-valued function F is convex on ða; cÞ; where �NpaocpN; then the
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holds for all integrable functions f : ð0; bÞ-R; such that f ðxÞAða; cÞ for

all xAð0; bÞ:
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Proof. Let f : ð0; bÞ-R be an arbitrary integrable function with values in ða; cÞ:
Applying Jensen’s inequality and Fubini’s theorem we obtainZ b
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and the proof is complete. &

Remark 1. Especially, if the weight function u is chosen to be uðxÞ � 1; then in
Theorem 1 we have

vðxÞ ¼ x
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: ð5Þ

so in the case when boN inequality (4) readsZ b
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while for b ¼ N it becomes (3). Therefore, relation (4) may be considered as a
generalization of (3), that is, as a new Hardy–Knopp-type inequality.

Remark 2. Note that if the function F in Theorem 1 is concave, then (4) holds with
the reversed sign of inequality.

Our analysis will be continued by formulating and proving a dual result to
Theorem 1.

Theorem 2. For 0pboN; let u : ðb;NÞ-R be a non-negative locally integrable

function in ðb;NÞ and the function v be given by

vðtÞ ¼ 1
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inequalityZ
N

b

uðxÞF x

Z
N

x

f ðtÞ dt

t2

� �
dx

x
p
Z

N

b

vðxÞFð f ðxÞÞ dx

x
ð6Þ

holds for all integrable functions f : ðb;NÞ-R; such that f ðxÞAða; cÞ for all

xAðb;NÞ:
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Proof. If f : ðb;NÞ-R is as in the statement of this theorem, then Jensen’s
inequality and Fubini’s theorem yieldZ
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so the proof is complete. &

Remark 3. As in Theorem 1, putting uðxÞ � 1 yields
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x
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x
: ð7Þ

Therefore, relation (6) in this setting can be written in the formZ
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In fact, this inequality may be seen as a dual relation to (3).

Remark 4. Theorem 2 holds also with a concave function F; except in that case the
sign of inequality in relation (6) is reversed.

3. Applications

Although elementary, the idea presented in the previous section seems to be
fruitful. To illustrate this fact, we give some applications of Theorems 1 and 2.
Namely, we consider the strengthened classical Hardy and Pólya–Knopp’s
inequalities and show that they are just special cases of the results mentioned. Thus
we have merged these well-known inequalities, and have provided them with new
proofs.

First, consider the strengthened Hardy’s integral inequality.

Corollary 1. Let p; k; bAR be such that p41; ka1 and b40; and let f be a nontrivial

and non-negative function.

(i) If k41 and 0o
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(ii) If ko1 and 0o
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The constant ð p=jk � 1jÞp
is the best possible for both inequalities.

Proof. The proof follows from Theorems 1 and 2 by choosing the convex function
FðxÞ ¼ xp and the weight function uðxÞ � 1:

Consider the case when k41 first. Observing that the weight function v in
Theorem 1 is then defined by (5), relation (4) readsZ b
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Now, replace the parameter b by a ¼ bðk�1Þ=p and choose for f the function

x/f ðxp=ðk�1ÞÞxp=ðk�1Þ�1: Then, with the substitutions s ¼ tp=ðk�1Þ and y ¼ xp=ðk�1Þ

respectively, the left-hand side of (10) becomesZ a

0

1

x

Z x

0

f ðtp=ðk�1ÞÞtp=ðk�1Þ�1 dt

� �p
dx

x

¼ k � 1

p

� �p Z a

0

1

x

Z xp=ðk�1Þ

0

f ðsÞ ds

 !p
dx

x

¼ k � 1

p

� �pþ1 Z b

0

y�k

Z y

0

f ðsÞ ds

� �p

dy:

Analogously, substituting y ¼ xp=ðk�1Þ; on the right-hand side of (10) we obtainZ a

0
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so relation (8) is proved. Note that the inequality sign in (8) is strict, owing to the
conditions on f from the statement of the theorem and to the fact that the function F
is strictly increasing.

Now, suppose that ko1: According to Theorem 2, considered with the weight
uðxÞ � 1; we have (7). Thus, relation (6) can be written in the formZ
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Replacing the function f in (11) by x/f ðxp=ð1�kÞÞxp=ð1�kÞþ1; the parameter b by

a ¼ bð1�kÞ=p; and making a similar sequence of substitutions as in the previous case,
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on the left-hand side of (11) we have
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while the right-hand side of (11) is
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Hence, (9) is proved, with the strict sign of the inequality again. The proof that

ðp=jk � 1jÞp is the best possible constant for (8) and (9) is given in [4]. &

Remark 5. Observe that Hardy’s inequality written in the form (10), as also its dual
inequality (11), hold also for p ¼ 1; but this is meaningless if they are written in the
form (8) and (9).

Remark 6. Note that by rewriting (8) with b ¼ N we obtain the classical Hardy’s
inequality (in particular, for k ¼ p we have (1)), while its dual inequality is achieved
by putting b ¼ 0 in (9).

Remark 7. It is easy to see that Corollary 1 holds also for the parameter pAð0; 1Þ;
but with a reversed sign of inequality in (8) and (9) since the function FðxÞ ¼ xp is in
that case concave (see Remarks 2 and 4).

Now, we continue with Pólya–Knopp’s inequality and its dual. The results will be
stated in a form given in [4,6,14], and after the proof they will be compared with (1).

Corollary 2. Let a; g; bAR be such that aa0 and b40; and let f be a positive function.

(i) If a40 and 0o
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xg�1f ðxÞ dx: ð12Þ
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(ii) If ao0 and 0o
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The constant eg=a is the best possible for both inequalities.

Proof. The proof follows from Theorems 1 and 2 if the functions F and u are chosen
to be FðxÞ ¼ ex and uðxÞ � 1: First, let us prove the case when a40: Since the weight
function v from Theorem 1 is given by (5), the inequality (4) in this setting readsZ b

0

exp
1

x

Z x

0

f ðtÞ dt

� �
dx

x
p
Z b

0

1� x

b

� 	
expð f ðxÞÞ dx

x
: ð14Þ

Now, replace b by a ¼ ba and choose for f the function x/logðxg=af ðx1=aÞÞ: Then,
with the substitutions s ¼ t1=a and y ¼ x1=a; the left-hand side of (14) becomesZ a
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Similarly, on the right-hand side of (14) we obtainZ a
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so relation (12) is proved. Observe that, under the conditions on f from the
statement of the theorem and considering the properties of the function F; the sign
of the inequality in (12) is strict.

In the case when ao0; the inequality (13) will be derived from Theorem 2.
Considering (7), relation (6) now has the formZ
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Thus, replacing b and f by a ¼ b�a and x/logðx�g=af ðx�1=aÞÞ; after the changes of
the variables s ¼ t�1=a and y ¼ x�1=a; on the left-hand side of (15) we haveZ

N

a
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Therefore, (13) is proved. Note that from the same reasons as in the previous case the

inequality sign is strict. The proof that eg=a is the best possible constant for both
inequalities (12) and (13) can be found in [4]. &

Remark 8. By letting b-N in (12) we obtain the inequalityZ
N

0

xg�1 exp
a
xa

Z x

0

ta�1 log f ðtÞ dt

� �
dxoeg=a

Z
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0

xg�1f ðxÞ dx; ð16Þ

due to Cochran and Lee [6]. On the other hand, relation (13), rewritten with b ¼ 0;
reads Z
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xa
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ta�1 log f ðtÞ dt
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Z
N

0
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This inequality, dual to (16), was proved by Love [14] (cf. also [15] for both results).
Because of some reasons explained in [2,3], relations (16) and (17) are called
Levin–Cochran–Lee’s inequalities.

Remark 9. Note that by choosing the parameters a ¼ 1 and g ¼ 1 inequality (12)
becomesZ b

0

exp
1

x

Z x

0

log f ðtÞ dt

� �
dxoe
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0

1� x

b

� 	
f ðxÞ dx; ð18Þ

while substituting a ¼ �1 and g ¼ 1 in (13) we haveZ
N

b

exp x

Z
N

x

log f ðtÞ dt
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� �
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Z
N
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x

� �
f ðxÞ dx: ð19Þ

Relations (18) and (19) are the strengthened Pólya–Knopp’s and its dual inequality.

Remark 10. It is important to observe that inequalities (12) and (18) are mutually
equivalent, as also relations (13) and (19). Indeed, it is evident that (12) implies (18)
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by using a suitable choice of the parameters. Now, we have to prove the converse.

Replacing b by ba; choosing for f the function x/xg=a�1f ðx1=aÞ; and using the same
sequence of substitutions as in the proof of Corollary 2, on the left-hand side of (18)
we obtainZ ba

0

exp
1

x

Z x

0

logðtg=a�1f ðt1=aÞÞ dt

� �
dx

¼ e1�g=a
Z ba

0

xg=a�1 exp
a
x

Z x1=a

0

sa�1 log f ðsÞ ds

 !
dx

¼ ae1�g=a
Z b

0

yg�1exp
a
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Z y

0

sa�1 log f ðsÞ ds

� �
dy;

while the right-hand side of (18) becomes

e

Z ba

0

1� x
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� 	
xg=a�1f ðx1=aÞ dx ¼ ae

Z b

0

1� y

b

� 	ah i
yg�1 f ðyÞ dy:

Hence, we have (12). The proof that inequalities (13) and (19) are mutually
equivalent is similar. Therefore, Levin–Cochran–Lee’s inequalities are not more
general than Pólya–Knopp-type inequalities.

Remark 11. According to Corollary 2(i), and its proof (see relation (14)), the
following sharp Pólya–Knopp-type inequality holds:Z b

0

exp
1

x

Z x

0

log f ðtÞ dt

� �
dx

x
o
Z b

0

1� x

b

� 	
f ðxÞ dx

x
: ð20Þ

By using Remark 2 with the concave function FðxÞ ¼ log x; in a similar way we
obtain a reversed Pólya–Knopp-type inequalityZ b

0

log
1

x

Z x

0

exp f ðtÞ dt

� �
dx

x
4
Z b

0

1� x

b

� 	
f ðxÞ dx

x
: ð21Þ

Analogously, we can use Corollary 2(ii), and relation (15) together with Remark 4
(considering the same concave function F), to obtain dual forms of (20) and (21),
that is, the inequalitiesZ

N

b

exp x

Z
N

x

log f ðtÞ dt

t2

� �
dx

x
o
Z

N

b

1� b

x

� �
f ðxÞ dx

x

and Z
N

b

log x

Z
N

x

exp f ðtÞ dt

t2

� �
dx

x
4
Z

N

b

1� b

x

� �
f ðxÞ dx

x
;

respectively.

Remark 12. The results presented in this paper can be generalized to special
multidimensional versions where the averages are taken over spheres in Rn and even
over more general infinite spherical cones. This fact can be understood by using
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polar coordinates and the one-dimensional results we just proved, together with the
ideas pointed out in [17]. The present authors plan to present the details of this
research, as also some other new complementary results and generalizations, in a
forthcoming paper.
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